Chromebooks and the ‘technology floor’

A few weeks back I wrote about using Chromebooks in some of our biology labs, and now that the Acer C720 has started shipping, I ordered two of them to start testing. I’ve only had them for a day, so this is not a performance review in any way, but I will say that it seems like a very functional computer. I’m used to the 11″ MacBook Air as my daily computer, and the screen size and keyboard are on par with that, although the color gamut seems more restricted; so far the battery life seems much better than the Air.

Part of what I want to work through as I’m testing is what, exactly, is the service model I’m aiming for — what is the purpose for these? The current computers are used to run evolution and ecology simulation software and a statistics package. I didn’t even bother requesting them this semester for our new bioinformatics exercise, opting instead to encourage students to bring their own, which worked fine. So why not just continue to do that instead of investing in lab-owned notebooks? If we are going to have to virtualize some of the software anyway, why not just give students access to it on their own machines?

This would be consistent with the trendy practice known as ‘bring your own device’ (BYOD), but I’m not convinced it’s the right way to go for us. One of the biggest weaknesses of this policy for education is that it lacks any kind of predictability. I’m not referring to predictability in terms of make and model and minimum specs, I mean whether the student brought their computer that day. There is a great benefit to being able to count on certain equipment being available and functional when planning a lab. For example, I know that we have a number of nice spectrophotometers, so I can design a lab exercise that requires them. Knowing that each student or pair of students is going to have access to a computer, and knowing what that computer is capable of, changes the design of the lab, to put it simply.

Here are a few activities that come to mind:

  • The lab manual could be moved online. As it stands, we have the manual printed for the students and (try to) collect the cost from them, which turns me into a cashier. This could be as simple as a PDF or as complex as a real ebook with interactive content.
  • We could produce short instructional videos for routine lab techniques and link to them from the online lab manual. These would be for things like pipetting, using the spectrophotometer, setting up a TLC experiment, or even setting up a slide on the microscope, which seems like a neverending mystery to many students.
  • Get into more detail on the practical side of data management and statistical testing. As it stands, we send students away and ask them to perform simple statistical tests on the data they have collected, but what they take away from this varies widely across the class. Some really get it, but others can’t get a handle on it. It would be nice to do more show-and-tell before sending them away to work alone.
  • Do some real training in literature searching. We have a light requirement for incorporating primary literature into the 2 formal lab reports, but we don’t spend time in lab talking about how to do this. I’d like to change this.

I could go on with a dozen other examples, but none of these is surprising, nor do any require anything other than a computer with Internet access. But you have to know it’ll be there. Right now, the range of access to a computing device begins at ‘none’, and having a set of lab computers would drastically improve that to ‘something’. I guess that is what I find so attractive about this whole idea: it offers a ‘technology floor’ where there is none now.

The idea of a technology floor works on a number of levels here. It supports the objectives we decide on teaching toward in any particular lab, that’s its primary job. But it also doesn’t have to remain exposed, students could choose to bring an equivalent computer of their own and use it. I’m thinking of the difference between vinyl flooring and travertine tile — they look and feel quite different, but ultimately serve the same function.

Have something to say about this?